
Non-bio-inspired Metaheuristics in Software Testing

Alfredo Delgado-Santiago1, Angel J. Sánchez-García1,
Marcela Quiroz-Castellanos2

1 Universidad Veracruzana,
Facultad de Estadística e Informática,

Mexico

2 Universidad Veracruzana,
Instituto de Investigaciones en Inteligencia Artificial,

Mexico

dltunasd@gmail.com, {angesanchez, mquiroz}@uv.mx

Abstract. The software testing phase usually consumes a large part of the
development of software projects trying to get as many defects as possible in the
final product. Different strategies have been approached to optimize this phase
of the testing stage; such is the case of metaheuristics, algorithms with the ability
to find high-quality solutions in a relatively short time. This research seeks to
analyze the current status of the application of metaheuristics that assist in
software testing phase activities, only the most representative non-bio-inspired
algorithms (NBA) are surveyed, being Hill Climbing and Local Search the most
used. The main activities of the software testing stage where NBA was
implemented were test case generation, test data generation and test case
prioritization (redundancy reduction). It was concluded that NBAs used on their
own are only viable in some activities of the software testing phase. As future
work, it is proposed to investigate the use of hybrid algorithms and approaches
in software testing phase.

Keywords: Metaheuristic, software testing, optimization, systematic
literature review.

1 Introduction

The need for software systems to be free of defects is increasing. To ensure the quality
of the Software, a transcendental phase is the testing phase. In this revolution called
Industry 4.0, Artificial Intelligence seeks to automate processes and provide products
with autonomous decision-making, among other benefits.

In the software development process, there are studies on the use of metaheuristics
at the software testing stage, however, most of these articles focus on bio-inspired
algorithms (i.e., algorithms based on nature), and there are several other alternatives
that could contribute to this field.

57

ISSN 1870-4069

Research in Computing Science 151(12), 2022pp. 57–65; rec. 2022-08-14; acc. 2022-11-18

A heuristic method is a tentative and plausible procedure whose purpose is to
discover the solution to a particular problem. The heuristic (or simply heuristic) is a
method that helps to discover the solution of a problem by making plausible but fallible
guesses about what the best thing is to do next [1].

Building on the above, a metaheuristic is a high-level problem-independent
algorithmic framework that provides a set of guidelines or strategies for developing
heuristic optimization algorithms. Notable examples of metaheuristics include
genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony
optimization [2].

As the years go by, the systems developed in software projects become more
complex, and, consequently, so do the tests. More and more alternatives are emerging
to address the different optimization approaches in the development of software testing,
such as the use of NBAs.

The use and research of these alternatives have shown that their use in the field of
software testing could represent an optimization to this rigorous stage.

This paper is organized as follows: Section 2 describes background and related work.
Section 3 details the method used to execute this Systematic Literature Review. In
Section 4, the results obtained from this work are presented. Finally, Section 5 draws
the main conclusions and proposes future work.

2 Background and Related Work

Artificial Intelligence is a discipline that has supported each of the phases of software
development, such as requirements, design, coding, testing and maintenance.

In the testing phase, especially optimization algorithms have been used to generate
test cases or identify defects. However, most of the strategies used are based on
evolutionary algorithms or bio-inspired algorithms.

In a manual search of related work, a Systematic Review about Bio-inspired
computation in software testing was found [3], which talks about the importance of

Table 1. Research questions.

Question Motivation
RQ1.- What are the non-bio-inspired
metaheuristics that have been reported at
the software testing stage?

To identify the NBAs reported in the software
testing phase.

RQ2.- What are the main activities of the
testing stage where non-bio-inspired
metaheuristics have been applied?

It is important to identify in which software
testing activities the algorithms reported in RQ1
have been used, in order to analyze the
contributions.

RQ3.- What are the advantages and
disadvantages that have been found with
the application of non-bio-inspired
metaheuristics at the testing stage?

One of the objectives of this research is to
describe the strengths and weaknesses of each
approach to know in which activities they will be
able to obtain better results.

RQ4.- What types of benchmark problems
have been used to test non-bio-inspired
metaheuristics?

To know the benchmarks used to test the
algorithms found, to identify their characteristics
and compare results with the proposals generated
in future work.

58

Alfredo Delgado-Santiago, Angel J. Sánchez-García, Marcela Quiroz-Castellanos

Research in Computing Science 151(12), 2022 ISSN 1870-4069

software testing and how optimization processes are handled in the software testing
stage and objective decision making. However, no Systematic Literature Review on the
application of metaheuristics not based on evolutionary algorithms in Software Testing
was identified.

Therefore, the purpose of this Systematic Literature Review (SLR) is to complement
the identified systematic review with metaheuristics that are not bioinspired. With this,
it will be possible to have a balance of both approaches, to describe advantages,
disadvantages and possible combinations between them to improve the results obtained
in the literature.

In addition, it is intended to identify software testing activities (such as test case
generation, branch coverage, defect identification, among others), where different
search optimization approaches have been used. Finally, it is expected to identify
benchmarks of various software testing activities, in which different optimization and
search approaches can be tested to compare future contributions.

3 Research Method

The method proposed by Kitchenham and Charters [4], which was proposed to carry
out SLR Software Engineering area, was selected for this work. The planning phase is
presented below.

3.1 Research Questions

This section shows the Research Questions (RQs) proposed for this research work.
Research Questions are described in Table 1.

3.2 Search Strategy and Data Sources

This section shows the keywords and related terms that were used in the search strings.
The decision to include the terms “Path Algorithms”, “Local Search”, “Neighborhood

Table 2. Keywords and synonyms identified.

Concept Synonyms and related terms
Metaheuristic Metaheuristics, Meta-heuristic

Software engineering -

Software testing Testing

Benchmark Benchmarks

Path algorithm Trajectory algorithm

Local search Explorative search

Neighborhood search -

GRASP Greedy Randomized Adaptive Search Procedure

Simulated annealing -

59

Non-bio-inspired Metaheuristics in Software Testing

Research in Computing Science 151(12), 2022ISSN 1870-4069

Search”, “GRASP” and “Simulated Annealing” was made because they were
considered important search terms in the context of this SLR.

The proposed search string from the key terms is described below.

(“Software testing” OR Testing) AND (“Software engineering”) AND (“trajectory
algorithm” OR “Local search” OR “Explorative search” OR “Neighborhood
search” OR “Greedy Randomized Adaptive Search Procedure” OR GRASP OR
“Simulated Annealing” OR “Tabu search”) AND (benchmark OR benchmarks).

Due to Science Direct operators limit (OR and AND), the string was adapted for use
in this research source, so that the string was as similar as possible to the main string.
The following search string was used in Science Direct.

"Software testing" AND "Software engineering" AND ("trajectory algorithm"
OR "Local search" OR "Explorative search" OR "Neighborhood search" OR
GRASP OR "Simulated annealing" OR "Tabu search").

Table 3 shows the databases used as source for this SLR.

3.3 Selection of Primary Studies

In this section, the criteria for the selection of primary studies are presented. The
inclusion and exclusion criteria are presented in Table 4 and Table 5, respectively.

3.4 Selection Procedure

The selection procedure was made up of the following stages:

– Stage 1. Primary studies are filtered according to IC1 and IC2.

– Stage 2. The primary studies are removed according to EC1 and EC2.

– Stage 3. Primary studies are filtered according to IC3 and IC4.

– Stage 4. The primary studies are removed according to EC3.

Table 3. Data source.

Database Website
IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp

ACM https://dl.acm.org/

Springer Link https://link.springer.com/

Science Direct https://www.sciencedirect.com/

Table 4. Inclusion criteria.

ID Description

IC1 The study was published between 2017 and 2022.

IC2 Full access to the study.

IC3
The title or abstract of the study contains the search term ‘Software testing’ and its
synonyms with another search term.

IC4 Reading the abstract, the study hints at answering at least one research question.

60

Alfredo Delgado-Santiago, Angel J. Sánchez-García, Marcela Quiroz-Castellanos

Research in Computing Science 151(12), 2022 ISSN 1870-4069

4 Results

The search process was carried out according to the SLR planning, executing the final
search string in each of the selected sources. As it is shown in Table 6, the greatest
reduction of studies occurred during Stage 3 of the selection process.

The list of references of the 19 primary studies selected for analysis can be found in
[5]. The template for data extraction from each primary study can be found in [6].

Nineteen articles were obtained from the application of the search criteria; however,
it was detected that only 9 of them contained information relevant to this research, since
they answered at least one research question. Fig. 1 shows the proportion of the type of
paper found (journal paper or conference paper).

It is worth mentioning that no dominant journal or conference was found. That is,
each primary study belongs to a different Journal or conference. Fig. 2 shows the
distribution of the years of publication of the selected studies, with 2018 being the most
dominant year on this topic.

Next, the report of the results obtained by answering each research question
is presented.

4.1 RQ1: What Were the Non-Bio-Inspired Metaheuristics that Have Been
Reported at the Software Testing Stage?

Fig. 3 shows the frequency of the algorithms found in this investigation. Several types
of NBA were identified: Hill climbing, Random search, Simulated annealing, Greedy
Algorithm, LIPS (Linearly Independent Path-based Search), Neighborhood search and
Ls-Sampling, being Search based approaches the most studied in the Software
testing stage.

Table 5. Exclusion Criteria.

ID Description

EC1 Studies that are not written in the English language.

EC2
Studies that are outreach articles, posters, books, chapters, presentations, abstracts, or
tutorials.

EC3 Duplicated studies.

Table 6. Application of inclusion and exclusion criteria by stage.

Database First Results Stage 1 Stage 2 Stage 3 Stage 4

ACM Digital Library 484 193 126 7 7

IEEE Xplore 38 18 18 4 4

SpringerLink 806 263 261 3 3

Science Direct 300 116 110 5 5

Total 1, 628 590 515 19 19

61

Non-bio-inspired Metaheuristics in Software Testing

Research in Computing Science 151(12), 2022ISSN 1870-4069

Hill climbing tends to be used for use case prioritization, as it is an optimization
algorithm. Due to its variants, the Search-based approaches was used numerous times
in the articles, such as Hill climbing, Random search, Neighborhood search and
Ls-Sampling.

4.2 RQ2: What are the Main Activities of the Testing Stage where Non-Bio-
Inspired Metaheuristics Have Been Applied?

The purpose of this research question is to identify the different activities of the testing
stage where the Algorithms detected in RQ1 were applied. Fig. 4 shows the most
addressed testing phase activities.

Four activities were reported for the software testing phase where NBAs assist; most
of the algorithms were used for test case prioritization; most of the algorithms detected
are optimization algorithms. Hill Climbing [7, 8, 9], Greedy Algorithm [7, 9], Random
Search [9], Simulated Annealing [8] and Neighborhood search [8] were used for this
activity. Hill Climbing [10] and Simulated Annealing [10] algorithms were used for
test data generation.

The findings of this research indicate that, compared with bio-inspired algorithms,
NBAs non-bio-inspired algorithms did not perform well doing test cases generation. In
this activity, the use of LIPS [11] was detected. According to the findings NBAs were

Fig. 1. Distribution by types of publication.

Fig. 2. Distribution by year in selected databases.

Journal
89%

Conference
11%

Journal Conference

62

Alfredo Delgado-Santiago, Angel J. Sánchez-García, Marcela Quiroz-Castellanos

Research in Computing Science 151(12), 2022 ISSN 1870-4069

used to sort and group test cases into test suites. Only the use of Ls-Sampling [12] was
reported for this activity of the software testing stage. LS-Sampling is a Search-based
sampling approach. Search-based approaches showed the most versatility for
performing software testing stage activities.

4.3 RQ3.- What are the Advantages and Disadvantages Found with the
Application of Bio-Inspired Algorithms at the Testing Stage?

The algorithms reported in primary studies were mostly compared against bio-
inspired algorithms; the results of these comparisons were that, commonly NBAs did
not show a significant improvement compared to bio-inspired algorithms; however, due
to their simplicity, i.e., the small number of lines of code required for their execution,
these algorithms are optimal to apply to specific or reduced tasks.

In large systems, according to the findings, it is more advisable to use multi-objective
approaches due to the number of functionalities they cover. Most of the reported
algorithms were used to test case prioritization.

4.4 RQ4.- What Types of Benchmark Problems Have Been Used to Test Non-
Bio-Inspired Metaheuristics?

Most of the NBAs were tested with specific problems, i.e., problems proposed by the
authors to simulate a real-life scenario [9, 8, 11]. Triangle was used in two studies [9,
12]. One study was tested with the Corpus SF110 benchmark [12]. The results can be
seen in Fig. 5.

5 Conclusions and Future Work

Industry 4.0 provides an automation of processes that help the manufacture of many
essential products such as software. Nowadays, software systems are becoming more
and more complex, therefore, testing those systems is becoming more and more
complicated. So, the use of algorithms that help optimize software testing activities is
a necessity.

Fig. 3. Frequency of reported algorithms.

Hill
Climbing

Greedy
algorith

m

Simulate
d

annealin
g

Random
Search

Neighbo
rhood
search

LIPS
Ls-

Samplin
g

times used 4 2 2 1 1 1 1

0
1
2
3
4
5

63

Non-bio-inspired Metaheuristics in Software Testing

Research in Computing Science 151(12), 2022ISSN 1870-4069

According to the information gathered in this SLR, non-bio-inspired metaheuristics
mean a great improvement to the software testing process, however, bio-inspired
algorithms are still superior in this aspect [12]. In carrying out this research, the use of
hybrid algorithms was detected, showing a significant improvement (according to the
benchmarks) in the efficiency when performing activities in the testing process.

It is proposed as future work the research of hybrid algorithms and approaches, since
according to studies [13, 14] they represent a significant improvement over the use of
individual approaches.

References

1. Feigenbaum, E. A, Feldman, J: Computers and thought. McGraw-Hill (1963)

2. Sörensen, K., Glover, F. W.: Metaheuristics. Encyclopedia of Operations Research and
Management Science, pp. 960–970 (2013) doi: 10.1007/978-1-4419-1153-7_1167

3. Gómez-San-Gabriel, J. E., Sánchez-García, Á. J., Cortés-Verdín, K.: Cómputo bio-
inspirado en la prueba de software: Una revisión sistemática de la literatura, vol. 149, no.
11, pp. 125-134 (2020)

4. Kitchenham, B. A., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering. Keele University and Durham University Joint Report (2007)

Fig. 4. Activities of the testing phase.

Fig. 5. Reported benchmark.

0
1
2
3
4
5
6
7
8
9

Test case
prioritization

Test data
generation

Test case
generation

Test suites
generation

Triangle
33%

Corpus SF110
17%

Specific
problems

50%

Triangle Corpus SF110 Specific problems

64

Alfredo Delgado-Santiago, Angel J. Sánchez-García, Marcela Quiroz-Castellanos

Research in Computing Science 151(12), 2022 ISSN 1870-4069

5. Appendix A: Primary studies references (2022) drive.google.com/file/d/1
PyDa70JBLd9jmNR_36YkFfdLziIXSJy/view?usp=sharing

6. Appendix B: Template for information analysis (2022) drive.google.com/file/ d/1ehs-
f0SNZcDeZmc3PoBaFTY8ypM7FDk/view?usp=sharing

7. Lou, Y., Chen, J., Zhang, L., Hao, D.: A survey on regression test-case prioritization.
Advances in Computers, Elsevier, pp. 1–46 (2019) doi: 10.1016/ bs.adcom.2018.10.001

8. Zamli, K.Z., Safieny, N., Din, F.: Hybrid test redundancy reduction strategy based on global
neighborhood algorithm and simulated annealing. In: Proceedings of the 7th International
Conference on Software and Computer Applications, Association for Computing
Machinery, pp. 87–91 (2018) doi: 10.1145/3185089.3185146

9. Prado-Lima, J. A., Vergilio, S. R.: Search-based higher order mutation testing. In:
Proceedings of the III Brazilian Symposium on Systematic and Automated Software
Testing, Association for Computing Machinery, pp. 87–96 (2018) doi:
10.1145/3266003.3266013

10. Nosrati, M., Haghighi, H., Vahidi-Asl, M.: Using likely invariants for test data generation.
Journal of Systems and Software, vol. 164, pp. 110549 (2020) doi:
10.1016/j.jss.2020.110549

11. Luo, C., Sun, B., Qiao, B., Chen, J., Zhang, H., Lin, J., Lin, Q., Zhang, D.: LS-sampling: an
effective local search based sampling approach for achieving high t-wise coverage. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Association for Computing
Machinery, pp. 1081–1092 (2021) doi: 10.1145/3468264.3468622

12. Panichella, A., Kifetew, F. M., Tonella, P.: A large scale empirical comparison of state-of-
the-art search-based test case generators. Information and Software Technology, vol. 104,
pp. 236–256 (2018) doi: 10.1016/j.infsof.2018.08.009

13. Lu, C., Zhong, J., Xue, Y., Feng, L., Zhang, J.: Ant colony system with sorting-based local
search for coverage-based test case prioritization. In: IEEE Transactions on Reliability, vol.
69, no. 3, pp. 1004–1020 (2020) doi: 10.1109/ tr.2019.2930358

14. Monemi-Bidgoli, A., Haghighi, H.: Augmenting ant colony optimization with adaptive
random testing to cover prime paths. Journal of Systems and Software, vol. 161, pp. 110495
(2020) doi: 10.1016/j.jss.2019.110495

65

Non-bio-inspired Metaheuristics in Software Testing

Research in Computing Science 151(12), 2022ISSN 1870-4069

